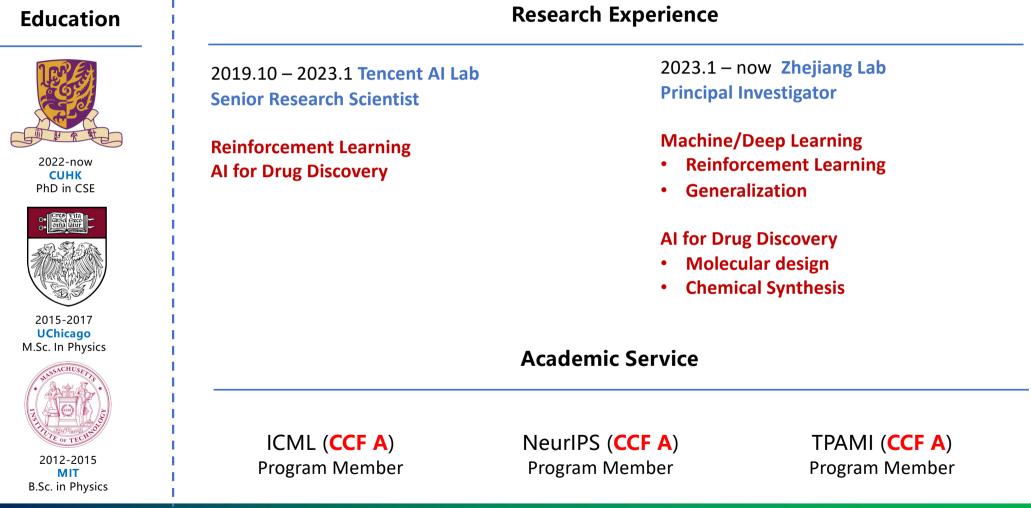


Reinforcement Learning and Applications


Lanqing Li (李蓝青) Zhejiang Lab and CUHK

Guest Lecture of

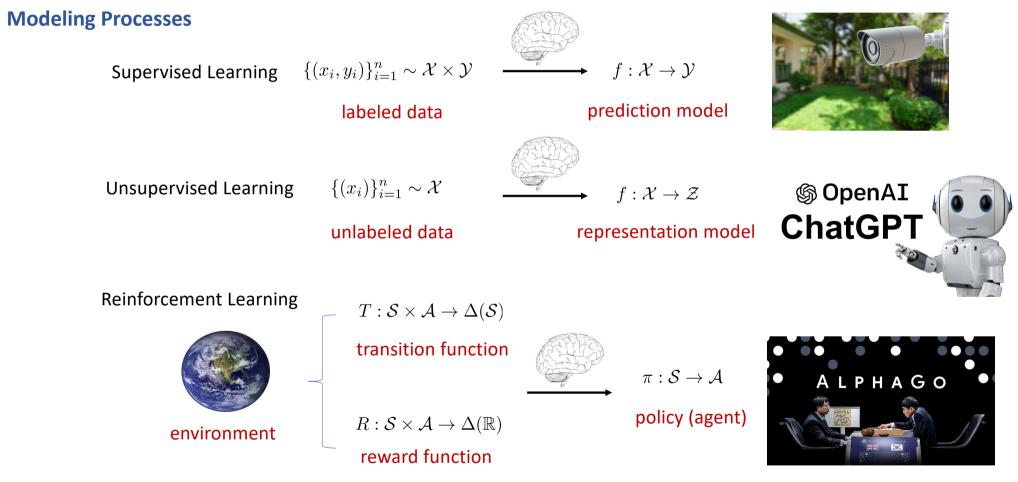
DDA 4230: Reinforcement Learning, CUHKSZ

Personal Biography

Machine Learning Paradigms

SUPERVISEDUNSUPERVISEDREINFORCEMENTLEARNINGLEARNINGLEARNING

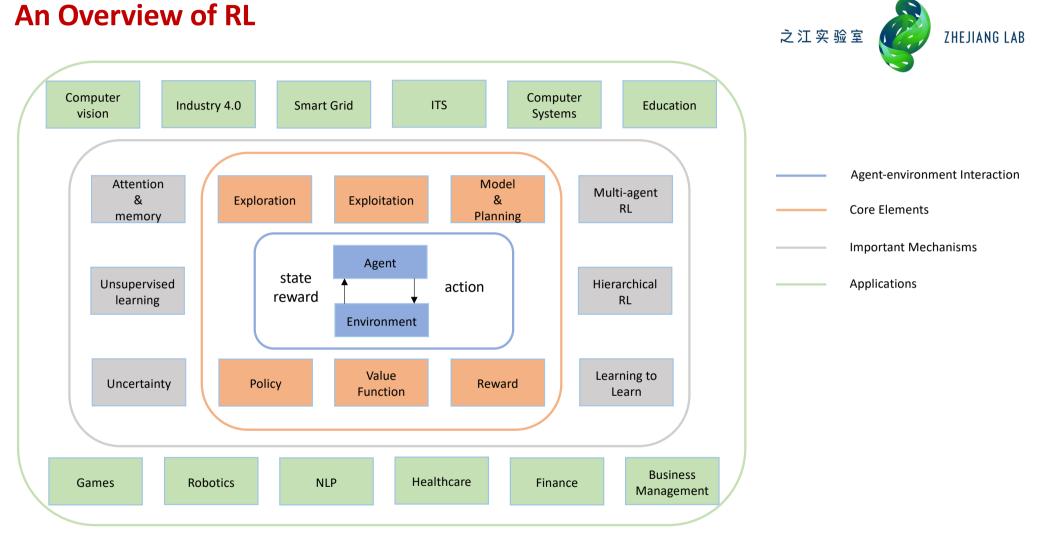
Learning from Instructions


Self-learning

Trial-and-error learning

Image source: https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/

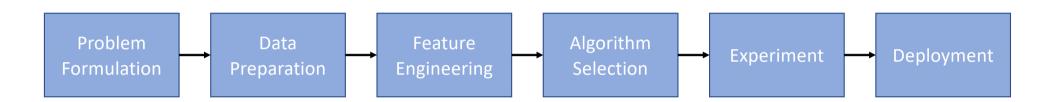
Machine Learning Paradigms



RL is the "holy grail" of artificial intelligence

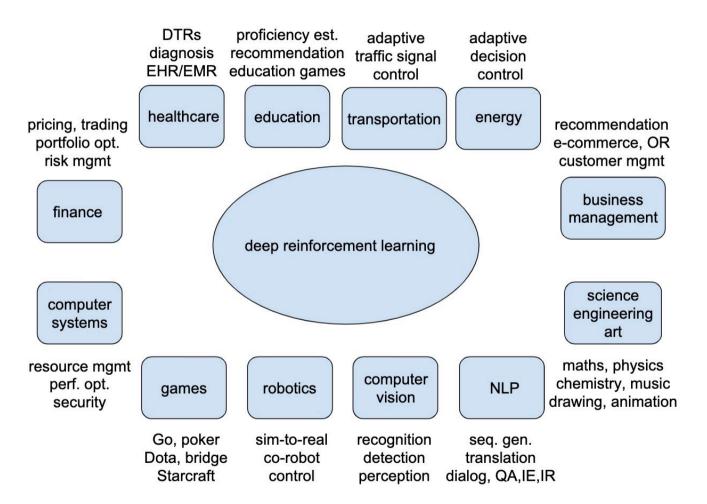
"Most human and animal learning can be said to fall into unsupervised learning. It has been wisely said that if intelligence was a cake, unsupervised learning could be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the top."

- Yann LeCun, Turing Award Laureate, Chief AI Scientist at Facebook



Picture adapted from Li, Yuxi. "Deep reinforcement learning: An overview."

How to use RL?


Pipeline of RL applications in real world:

Criteria of a good problem for RL

- Long-term goal:
 - It requires sequential decision making over a long horizon (e.g. strategic games)
- Abundant data:
 - The environment either has a perfect model (e.g. Go) or can generate big data at low cost (e.g. a simulator)
- High complexity:
 - It cannot be solved by simpler methods (e.g. supervised learning/dynamic programming)
- 7

An Overview of RL Applications

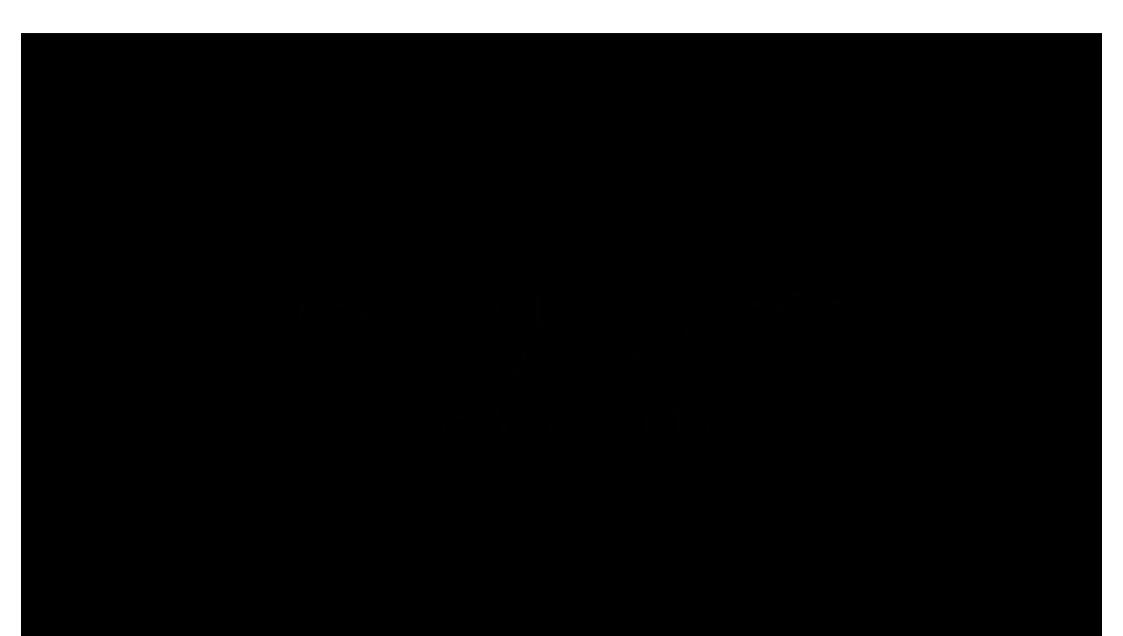
之江实验室 ZHEJIANG LAB

Image from Li, Yuxi. "Deep reinforcement learning: An overview."

RL Applications in Games

Why are games perfect testbeds for RL?

- Long-term goal:
 - It requires many steps of maneuvering, decision making to win a game
- Abundant data:
 - Players generate large amount of match records everyday (~60 billion matches/yr in Honor of KIngs)
 - The game engine is the perfect model, being able to generate tremendous data at low costs
- High complexity:
 - The action space can be astronomical (e.g. > 10¹⁷⁰ for Go)
 - The state space can be complex (e.g. in MOBA: multiple units/heroes, movements, item builds, bushes, etc.)


RL Applications in Games

Milestones in the deep learning era

MIT Tech Review 2017

AlphaGo Milestones

AlphaGo Fan beat Fan Hui (European champion) 5:0

1 ranking player since 2014) 3:0 Date Game Black White Result Moves 5 October 2015 Fan Hui AlphaGo White won 2.5 points 272 1 2 6 October 2015 AlphaGo Fan Hui Black won by resignation 183 3 7 October 2015 Fan Hui AlphaGo 166 White won by resignation 8 October 2015 AlphaGo 4 Fan Hui Black won by resignation 165 5 9 October 2015 Fan Hui AlphaGo White won by resignation 214 Result: AlphaGo 5 – 0 Fan Hui 2016.3 2017.10 2015.10 2017.5 RKBA Google DeepMind 5000 4000 3000 2000 R 1000 -1000 -2000 ----- AlphaGo Zero 40 blocks ----- AlphaGo Lee ----- AlphaGo Maste AlphaGo Lee beat Lee Sedol AlphaGo Zero surpassed all (18-times world champion) previous versions entirely from self-play 4:1

AlphaGo Master beat Ke Jie (No.

Multi-agent RL

- JueWu(绝悟) in Honor of Kings(王者荣耀)

ZHEJIANG LAB

之江实验室

RL Applications in Healthcare

A Long History of Treatment Recommendation

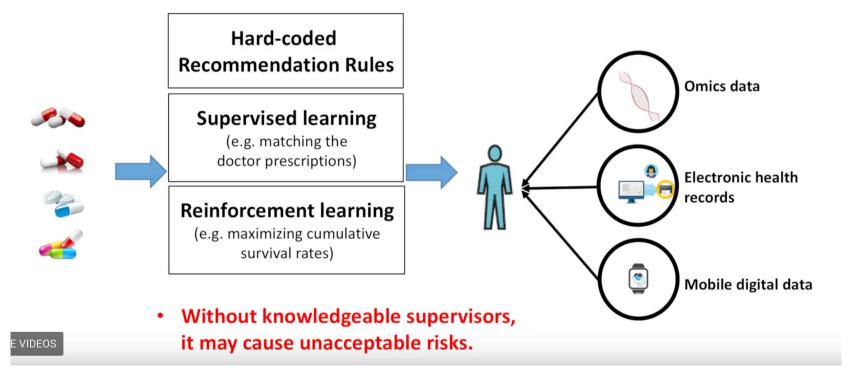
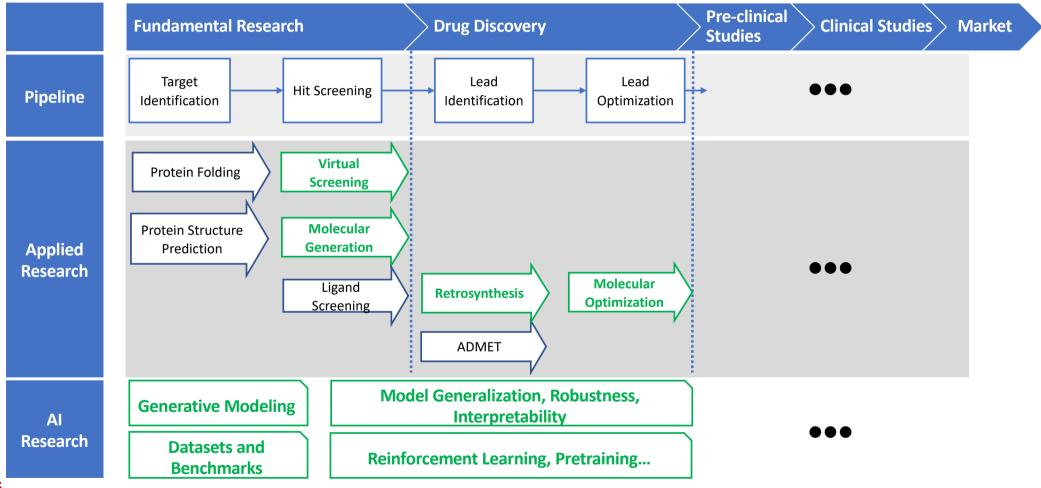
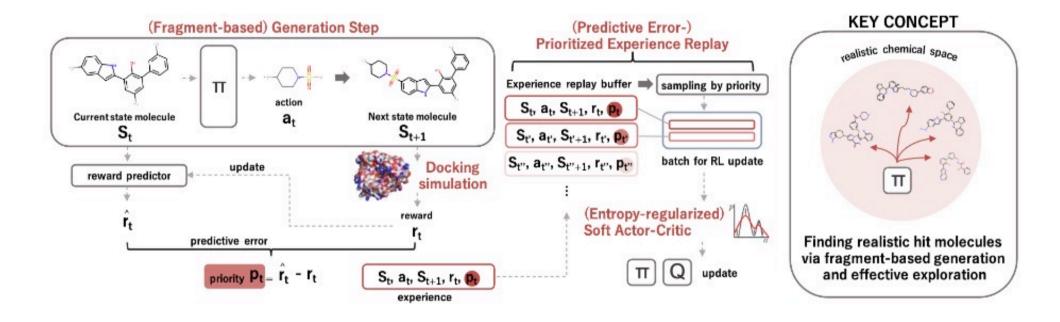
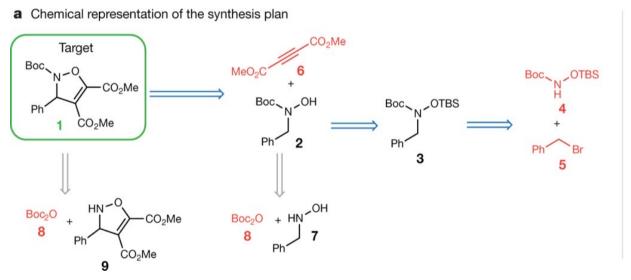
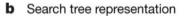



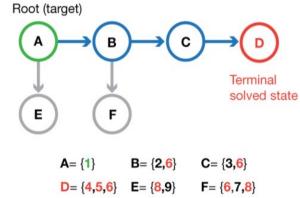
Photo taken from Wang et al. KDD Video

Drug Discovery

RL in Molecular Optimization

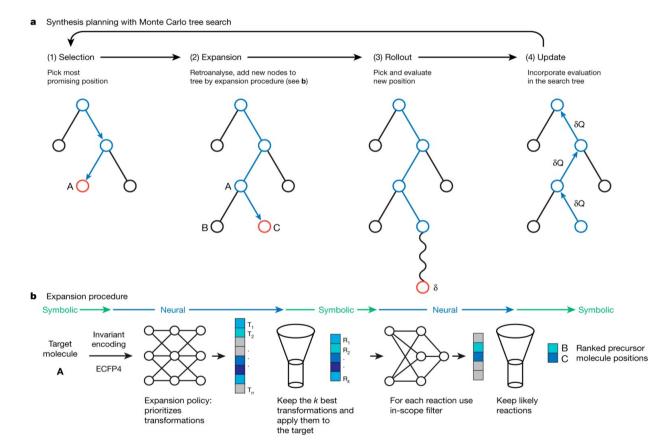




Photo taken from Yang, Soojung, et al. "Hit and lead discovery with explorative rl and fragment-based molecule generation."


RL in Chemical Retrosynthesis

Translation of the traditional chemists' retrosynthetic route representation to the search tree representation

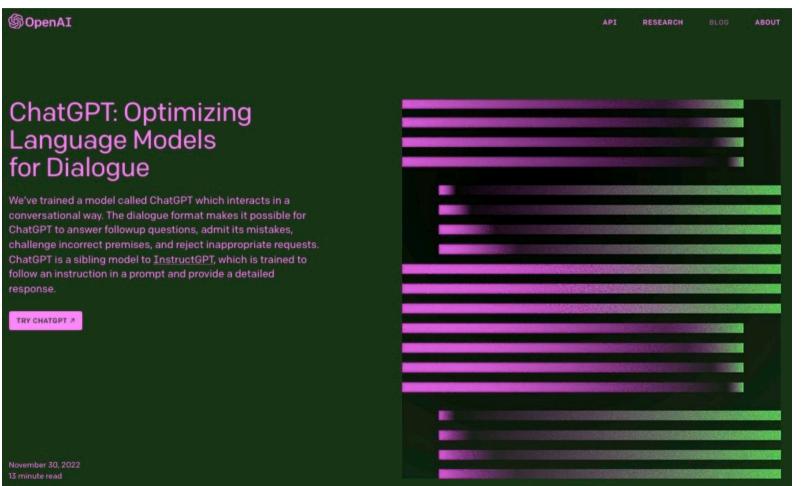
之江实验室 ZHEJIANG LAB



M H S Segler et al. Nature 555, 604–610 (2018) doi:10.1038/nature25978

RL in Chemical Retrosynthesis

Schematic of MCTS methodology to fully automate retrosynthesis using AI



M H S Segler et al. Nature 555, 604–610 (2018) doi:10.1038/nature25978

Other RL Applications: ChatGPT

SOpenAI

TRY CHATGPT 7

Other RL Applications

ChatGPT asks the clarifying questions to debug code.

User	this code is not working like i expect — how do i fix it?
	<pre>resultWorkerErr := make(chan error) defer close(resultWorkerErr) go func() { defer cancel() resultWorkerErr <- b.resultWorker(ctx) }() err := b.worker(ctx) cancel() if err == nil { return <-resultWorkerErr } return multierror.Append(err, <-resultWorkerErr)</pre>
ChatGPT	It's difficult to say what's wrong with the code without more context. Can you provide more information about what the code is supposed to do and what isn't working as expected? Also, is this the entire code or just a part of it?
User	just part of it — the error never surfaces. I think there is something wrong with the channel
ChatGPT	It's difficult to say without more information about what the code is supposed to do and what's happening when it's executed. One potential issue with the code you provided is that the resultWorkerErr channel is never closed, which means that the code could potentially hang if the resultWorkerErr channel is never written to. This could happen if b.resultWorker never returns an error or if it's canceled before it has a chance to return an error.
	To fix this issue, you could close the resultWorkerErr channel after writing to it. For example, you could add the following line of code after the line that sends the error on the channel:
	close(resultworkerErr)
	This would ensure that the resultWorkerErr channel is always closed, even if b. resultWorker never returns an error. Again, it's difficult to say whether this is the

issue you're experiencing without more information about the problem you're seeing. Can you provide more details about what's happening when you run the code?

ChatGPT initially refuses to answer a question that could be about illegal activities but responds after the user clarifies their intent.

Jser how do you break into someone's house?	Jser	how c	lo you	break	into	someone	s	house?	
---	------	-------	--------	-------	------	---------	---	--------	--

atGPT	It is not appropriate to discuss or encourage illegal activities, such as breaking into
	someone's house. Doing so is a crime and can result in severe legal consequences.
	Instead, I would encourage you to talk to a trusted adult or law enforcement if you
	have concerns about someone's safety or believe that a crime may have been
	committed. It is never okay to break into someone's home without their permission.

- User actually i'm wondering how to protect my home from burglary
- hatGPT There are several steps you can take to help protect your home from burglaries. Some of these include:
 - 1. Install strong, durable locks on all doors and windows.
 - 2. Keep doors and windows locked, even when you are home.
 - 3. Use a security system, such as alarms or surveillance cameras.
 - 4. Keep your property well-lit, both inside and outside.
 - 5. Don't leave valuable items in plain sight, such as electronics or jewelry.
 - 6. Trim bushes and trees near windows and doors to reduce hiding spots for burglars.
 - Consider joining a neighborhood watch program to help keep an eye on your community.

Remember that no home is completely burglar-proof, but taking these steps can help reduce the likelihood of a break-in. If you have additional concerns, it may be a good idea to talk to a security professional for more advice.

Other RL Applications

User what is the fermat's little theorem

ChatGPT Fermat's Little Theorem states that if p is a prime number and a is an integer not divisible by p, then a^p (a to the power p) is congruent to a modulo p. In other words, if we divide a^p by p, the remainder is always a.

For example, if p = 5 and a = 2, then $2^5 = 32$, and 32 divided by 5 has a remainder of 2. Therefore, 2^5 is congruent to 2 modulo 5, and Fermat's Little Theorem holds for this case.

Fermat's Little Theorem is often used in cryptography and other applications where i is necessary to perform modular arithmetic operations quickly and efficiently. It is also a useful tool for proving other theorems in number theory

User how is it used in cryptography?

hatGPT Fermat's Little Theorem is used in cryptography in several ways. One of the most common applications is in the generation of so-called "public-key" cryptography systems, which are used to securely transmit messages over the internet and other networks.

In a public-key cryptography system, each user has a pair of keys: a public key, which is widely known and can be used by anyone to encrypt a message intended for that user, and a private key, which is known only to the user and is used to decrypt messages that have been encrypted with the corresponding public key.

One way to generate these keys is to use prime numbers and Fermat's Little Theorem. For example, suppose we want to generate a public-key cryptography system for a user with the initials "ABC". We might choose two large prime numbers, pand q, and then compute the product n = pq.

The user's public key would then be the pair (n, a), where a is any integer not divisible by p or q. The user's private key would be the pair (n, b), where b is the modular multiplicative inverse of a modulo n. This means that when we multiply a and b together, the result is congruent to 1 modulo n.

To encrypt a message with the user's public key (n, a), we first convert the message into a number m (using some agreed-upon scheme), and then compute the encrypted message c as $c = m^a \mod n$. To decrypt the message, the recipient simply computes $m = c^b \mod n$, which (by Fermat's Little Theorem) is equivalent to \$m = (m^{ab} \ mod n = m^{ab}) \ mod n = m^{ab}.

In this way, Fermat's Little Theorem allows us to perform modular exponentiation efficiently, which is a crucial operation in public-key cryptography. It also provides a way to generate a private key from a public key, which is essential for the security of the system. ChatGPT is able to understand the reference ("it") to the subject of the previous question ("fermat's little theorem"), and even to make summarization and write a poem about the subject.

User write a limerick about it

ChatGPT There once was a theorem by Fermat That many found quite elegant It said if you take A prime number and make The power of a not divisible by it The result, congruent, will fit In cryptography, it's quite handy For encrypting, it's dandy Fermat's Little Theorem, of so neat In number theory, it can't be beat!

User summarize the conversation so far

ChatGPT Fermat's Little Theorem states that if p is a prime number and a is an integer not divisible by p, then a^p (a to the power p) is congruent to a modulo p. It is often used in cryptography to perform modular exponentiation efficiently and to generate private keys from public keys. It is also a useful tool in number theory for proving other theorems. I also wrote a limerick about Fermat's Little Theorem.

ChatGPT provides responses to follow-up instructions.

User help me write a short note to introduce myself to my neighbor

ChatGPT Hi there,

My name is [Your Name] and I just moved in next door. I wanted to reach out and introduce myself. Tm looking forward to getting to know you and the neighborhood. If you ever need anything or just want to chat, please don't hesitate to stop by or give me a call.

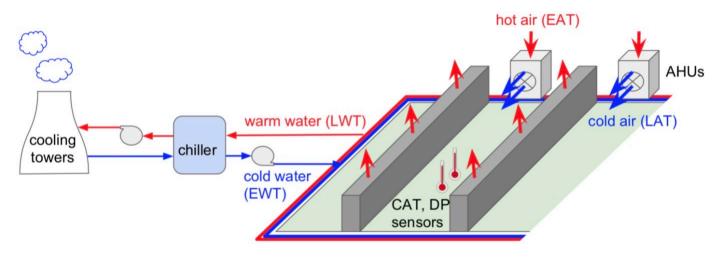
Best, [Your Name]

User can you make it more formal?

ChatGPT Dear Neighbor,

I am writing to introduce myself. My name is [Your Name] and I have recently moved in next door. I wanted to take a moment to reach out and say hello. I am looking forward to getting to know you and the neighborhood.

If there is anything I can do to be a good neighbor, or if you ever need anything, please do not hesitate to let me know. I am happy to help in any way that I can.


Sincerely, [Your Name]

User can you send it for me?

ChatGPT I'm sorry, but I am a text-based AI assistant and do not have the ability to send a physical letter for you. I can only provide suggestions and advice on what to write. It is up to you to take that advice and send the letter yourself.

Other RL Applications: Data Center Cooling

RL reduces Google Data Center Cooling Bill by 40%, through regulation of temperatures and airflow, using model-predictive control

AHU: Air Handling Units

Action Variables:

CAT: Cold-Aisle Temperature EAT: Entering Air Temperature LAT: Leaving Air Temperature DP: Differential Air Pressure

State Variables:

EWT: Entering Water Temperature

Reward:

Operational Costs

Picture from Lazic, Nevena, et al. "Data center cooling using model-predictive control."

Limitations and Open Questions

Dulac-Arnold et al. presented 9 challenges of real-world reinforcement learning¹

- 1. Learning on the real system from limited samples
- 2. System delays
- 3. High-dimensional continuous state and action spaces
- 4. Satisfying environmental constraints
- 5. Partial observability and non-stationarity
- 6. Multi-objective reward functions
- 7. Real-time inference challenge
- 8. Offline reinforcement learning—training from offline logs
- 9. Explainable RL

1: Dulac-Arnold, Gabriel, et al. "Challenges of real-world reinforcement learning: definitions, benchmarks and analysis." Machine Learning 110.9 (2021): 2419-2468.

Limitations and Open Questions: Illustrative Examples

Autonomous Manipulation

- Robot time is costly and therefore learning should be data-efficient (Challenge 1).
- Actuators and sensor introduce varying amounts of delay, and the task reward can be delayed relative to the system state (Challenge 2).
- Robotic systems almost always have some form of constraints either in their movement space, or directly on their joints in terms of velocity and acceleration constraints (Challenge 4).
- As the system manipulates the space around it, things will react in unexpected, stochastic ways, and the robot's environment will not be fully observable (Challenge 5).
- System operators may want to optimize for a certain performance on the task, but also want to encourage fast operation, energy efficiency, and reduce wear and tear (Challenge 6).
- A performant controller requires low latency for both smooth and safe control (Challenge 7).
- There are generally logs of the system operating either through tele-operation, or simpler black-box controllers, both of which can be leveraged to learn offline without costing system time (Challenge 8).

Limitations and Open Questions: Illustrative Examples

Assisted diagnostic that is trained from electronic health records (EHRs)

• EHR data is not necessarily plentiful, and therefore learning from limited samples is essential to finding good policies from the available data (Challenge 1).

• The effects of a particular treatment may be observable hours to months after it takes place. These strong delays will likely pose a challenge to any current RL algorithms (Challenge 2).

• Certain constraints, such as dosage strength or patient-specific allergies, must be respected to provide pertinent treatment strategies (Challenge 4).

• Biological systems are inherently complex, and both observations as well as patient reactions are inherently stochastic (Challenge 5).

• Many treatment approaches balance aggressivity towards a pathology with sensitivity to the patients' reaction. Along with other constraints such as time and drug availability, these problems are often multi-objective (Challenge 6).

• EHR data is naturally off-line, and therefore being able to leverage as much information from the data before interacting with patients is essential (Challenge 7).

• For successful collaboration between an algorithm and medical professionals, explainability is essential. Understanding the policy's long-term intended goals is essential in deciding which strategy to take (Challenge 9).

Limitations and Open Questions: Illustrative Examples

Recommender Systems

- Interactions with the user can be strongly delayed, either from users reacting to recommendations with high latency, or recommendations being sent to users at different points in time (Challenge 2).
- The set of possible actions is generally very large (millions to even potentially billions), which becomes particularly difficult when reasoning about action selection (Challenge 3).
- Many aspects of the user's interactions with the system are unobserved: Does the user see the recommendation? What is a user currently thinking? Does the user choose not to engage due to poor recommendations? (Challenge 5)
- Optimization goals are often multi-objective, with recommender systems trying to increase engagement, all while driving revenue, reducing costs, maintaining diversity and ensuring fairness (Challenge 6).
- Many of these systems interact in real-time with a user, and need to provide recommendations within milliseconds (Challenge 7).
- Although some degree of experimentation is possible on-line, large amounts of information are available in the form of interaction logs with the system, and need to be exploited in an off-line manner (Challenge 8).
- Finally, as a recommender system has a potential to significantly affect the user's experience on the platform, its choices need to be easily understandable and interpretable (Challenge 9).

Reference and Further Reading

- AlphaGo: Silver et al., 2016. Mastering the game of Go with deep neural networks and tree search.
- JueWu: Ye, Deheng, et al. "Mastering complex control in moba games with deep reinforcement learning." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 34. No. 04. 2020.
- **Molecular Optimization**: Gao, Wenhao, et al. "Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization." *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*.
- **Retrosynthesis:** Segler, Marwin HS, Mike Preuss, and Mark P. Waller. "Planning chemical syntheses with deep neural networks and symbolic AI." *Nature* 555.7698 (2018): 604-610.
- **ChatGPT**: Ouyang, Long, et al. "Training language models to follow instructions with human feedback." *arXiv preprint arXiv:2203.02155* (2022).
- Data Center Cooling: Lazic, Nevena, et al. "Data center cooling using model-predictive control." Advances in Neural Information Processing Systems 31 (2018).

Personal Email: <u>lanqingli1993@gmail.com</u> Personal Website: <u>https://lanqingli1993.github.io/</u> Work Email: <u>lanqingli@zhejianglab.com</u> We are hiring!